13.3E: Exercises for Section 13.3 (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    154194
    • 13.3E: Exercises for Section 13.3 (1)
    • Gilbert Strang & Edwin “Jed” Herman
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Determining Arc Length

    In questions 1 - 5, find the arc length of the curve on the given interval.

    1) \(\vecs r(t)=t^2 \,\hat{\mathbf{i}}+(2t^2+1)\,\hat{\mathbf{j}}, \quad 1≤t≤3\)

    Answer
    \(8\sqrt{5}\) units

    2) \(\vecs r(t)=t^2 \,\hat{\mathbf{i}}+14t \,\hat{\mathbf{j}},\quad 0≤t≤7\). This portion of the graph is shown here:

    13.3E: Exercises for Section 13.3 (2)

    3) \(\vecs r(t)=⟨t^2+1,4t^3+3⟩, \quad −1≤t≤0\)

    Answer
    \(\frac{1}{54}(37^{3/2}−1)\) units

    4) \(\vecs r(t)=⟨2 \sin t,5t,2 \cos t⟩,\quad 0≤t≤π\). This portion of the graph is shown here:

    13.3E: Exercises for Section 13.3 (3)

    5) \(\vecs r(t)=⟨e^{−t \cos t},e^{−t \sin t}⟩\) over the interval \([0,\frac{π}{2}]\). Here is the portion of the graph on the indicated interval:

    13.3E: Exercises for Section 13.3 (4)

    6) Set up an integral to represent the arc length from \(t = 0\) to \(t = 2\) along the curve traced out by \(\vecs r(t) = \langle t, \, t^4\rangle.\) Then use technology to approximate this length to the nearest thousandth of a unit.

    7) Find the length of one turn of the helix given by \(\vecs r(t)= \frac{1}{2} \cos t \,\hat{\mathbf{i}}+\frac{1}{2} \sin t \,\hat{\mathbf{j}}+\frac{\sqrt{3}}{2}\,t \,\hat{\mathbf{k}}\).

    Answer
    Length \(=2π\) units

    8) Find the arc length of the vector-valued function \(\vecs r(t)=−t \,\hat{\mathbf{i}}+4t \,\hat{\mathbf{j}}+3t \,\hat{\mathbf{k}}\) over \([0,1]\).

    9) A particle travels in a circle with the equation of motion \(\vecs r(t)=3 \cos t \,\hat{\mathbf{i}}+3 \sin t \,\hat{\mathbf{j}} +0 \,\hat{\mathbf{k}}\). Find the distance traveled around the circle by the particle.

    Answer
    \(6π\) units

    10) Set up an integral to find the circumference of the ellipse with the equation \(\vecs r(t)= \cos t \,\hat{\mathbf{i}}+2 \sin t \,\hat{\mathbf{j}}+0\,\hat{\mathbf{k}}\).

    11) Find the length of the curve \(\vecs r(t)=⟨\sqrt{2}t,\, e^t, \, e^{−t}⟩\) over the interval \(0≤t≤1\). The graph is shown here:

    13.3E: Exercises for Section 13.3 (5)

    Answer
    \(\left(e−\frac{1}{e}\right)\) units

    12) Find the length of the curve \(\vecs r(t)=⟨2 \sin t, \, 5t, \, 2 \cos t⟩\) for \(t∈[−10,10]\).

    Unit Tangent Vectors and Unit Normal Vectors

    13) The position function for a particle is \(\vecs r(t)=b \cos( ωt) \,\hat{\mathbf{i}}+b \sin (ωt) \,\hat{\mathbf{j}}\). Find the unit tangent vector and the unit normal vector at \(t=0\). Hint: Use the result of 13.2 #27 to help find the unit normal. Note the acceleration and the normal vector are in the same direction since the speed is constant.

    13.3E: Exercises for Section 13.3 (6)

    Solution:
    \(\begin{align*} \vecs r'(t) &= -bω \sin( ωt) \,\hat{\mathbf{i}}+bω \cos (ωt) \,\hat{\mathbf{j}}\\[5pt]
    \| \vecs r'(t) \| &= \sqrt{b^2 ω^2 \sin^2(ωt) +b^2ω^2\cos^2(ωt)} \\[5pt]
    \vecs T(t) &= \dfrac{\vecs r'(t)}{\| \vecs r'(t) \| } = \dfrac{-bω \sin( ωt) \,\hat{\mathbf{i}}+bω \cos (ωt) \,\hat{\mathbf{j}}}{\sqrt{b^2 ω^2 \sin^2(ωt) +b^2ω^2\cos^2(ωt)}}\\[5pt]
    \vecs T(0) &= \dfrac{bω \,\hat{\mathbf{j}}}{\sqrt{(bω)^2}} = \dfrac{bω \,\hat{\mathbf{j}}}{|bω|}\end{align*}\)

    If \(bω > 0, \; \vecs T(0) = \hat{\mathbf{j}},\) and if \( bω < 0, \; T(0)= -\hat{\mathbf{j}}\)

    Answer
    If \(bω > 0, \; \vecs T(0)= \hat{\mathbf{j}},\) and if \( bω < 0, \; \vecs T(0)= -\hat{\mathbf{j}};\ \; \vecs N(0)= -\hat{\mathbf{i}}\)

    14) Given \(\vecs r(t)=b \cos (ωt) \,\hat{\mathbf{i}} +b \sin (ωt) \,\hat{\mathbf{j}}\), find the binormal vector \(\vecs B(0)\).

    Answer
    \(\vecs B(0)=\hat{\mathbf{k}}\)

    15) Given \(\vecs r(t)=⟨2e^t,e^t \cos t,e^t \sin t⟩\), determine the unit tangent vector \(\vecs T(t)\).

    Answer
    \(\begin{align*} \vecs T(t) &=\left\langle \frac{2}{\sqrt{6}},\, \frac{\cos t− \sin t}{\sqrt{6}}, \, \frac{\cos t+ \sin t}{\sqrt{6}}\right\rangle \\[4pt]
    &= \left\langle\frac{\sqrt{6}}{3},\, \frac{\sqrt{6}}{6} (\cos t− \sin t), \, \frac{\sqrt{6}}{6} (\cos t+ \sin t)\right\rangle \end{align*}\)

    16) Given \(\vecs r(t)=⟨2e^t,\, e^t \cos t,\, e^t \sin t⟩\), find the unit tangent vector \(\vecs T(t)\) evaluated at \(t=0\), \(\vecs T(0)\).

    17) Given \(\vecs r(t)=⟨2e^t,\, e^t \cos t,\, e^t \sin t⟩\), determine the unit normal vector \(\vecs N(t)\).

    Answer
    \(\vecs N(t)=⟨0,\, -\frac{\sqrt{2}}{2} (\sin t + \cos t), \, \frac{\sqrt{2}}{2} (\cos t- \sin t)⟩\)

    18) Given \(\vecs r(t)=⟨2e^t,\, e^t \cos t,\, e^t \sin t⟩\), find the unit normal vector \(\vecs N(t)\) evaluated at \(t=0\), \(\vecs N(0)\).

    Answer
    \(\vecs N(0)=⟨0, \;-\frac{\sqrt{2}}{2},\;\frac{\sqrt{2}}{2}⟩\)

    19) Given \(\vecs r(t)=t \,\hat{\mathbf{i}}+t^2 \,\hat{\mathbf{j}}+t \,\hat{\mathbf{k}}\), find the unit tangent vector \(\vecs T(t)\). The graph is shown here:

    13.3E: Exercises for Section 13.3 (7)

    Answer
    \(\vecs T(t)=\dfrac{1}{\sqrt{4t^2+2}}<1,2t,1>\)

    20) Find the unit tangent vector \(\vecs T(t)\) and unit normal vector \(\vecs N(t)\) at \(t=0\) for the plane curve \(\vecs r(t)=⟨t^3−4t,5t^2−2⟩\). The graph is shown here:

    13.3E: Exercises for Section 13.3 (8)

    21) Find the unit tangent vector \(\vecs T(t)\) for \(\vecs r(t)=3t \,\hat{\mathbf{i}}+5t^2 \,\hat{\mathbf{j}}+2t \,\hat{\mathbf{k}}\).

    Answer
    \(\vecs T(t)=\dfrac{1}{\sqrt{100t^2+13}}(3 \,\hat{\mathbf{i}}+10t \,\hat{\mathbf{j}}+2 \,\hat{\mathbf{k}})\)

    22) Find the principal normal vector to the curve \(\vecs r(t)=⟨6 \cos t,6 \sin t⟩\) at the point determined by \(t=\frac{π}{3}\).

    23) Find \(\vecs T(t)\) for the curve \(\vecs r(t)=(t^3−4t) \,\hat{\mathbf{i}}+(5t^2−2) \,\hat{\mathbf{j}}\).

    Answer
    \(\vecs T(t)=\dfrac{1}{\sqrt{9t^4+76t^2+16}}\big((3t^2−4)\,\hat{\mathbf{i}}+10t \,\hat{\mathbf{j}}\big)\)

    24) Find \(\vecs N(t)\) for the curve \(\vecs r(t)=(t^3−4t)\,\hat{\mathbf{i}}+(5t^2−2)\,\hat{\mathbf{j}}\).

    25) Find the unit tangent vector \(\vecs T(t)\) for \(\vecs r(t)=⟨2 \sin t,\, 5t,\, 2 \cos t⟩\).

    Answer
    \(\vecs T(t)=⟨\frac{2\sqrt{29}}{29}\cos t,\, \frac{5\sqrt{29}}{29},\,−\frac{2\sqrt{29}}{29}\sin t⟩\)

    26) Find the unit normal vector \(\vecs N(t)\) for \(\vecs r(t)=⟨2\sin t,\,5t,\,2\cos t⟩\).

    Answer
    \(\vecs N(t)=⟨−\sin t,\, 0,\, −\cos t⟩\)

    Arc Length Parameterizations

    27) Find the arc-length function \(\vecs s(t)\) for the line segment given by \(\vecs r(t)=⟨3−3t,\, 4t⟩\). Then write the arc-length parameterization of \(r\) with \(s\) as the parameter.

    Answer
    Arc-length function: \(s(t)=5t\); The arc-length parameterization of \(\vecs r(t)\): \(\vecs r(s)=\left(3−\dfrac{3s}{5}\right)\,\hat{\mathbf{i}}+\dfrac{4s}{5}\,\hat{\mathbf{j}}\)

    28) Parameterize the helix \(\vecs r(t)= \cos t \,\hat{\mathbf{i}}+ \sin t \,\hat{\mathbf{j}}+t \,\hat{\mathbf{k}}\) using the arc-length parameter \(s\), from \(t=0\).

    29) Parameterize the curve using the arc-length parameter \(s\), at the point at which \(t=0\) for \(\vecs r(t)=e^t \sin t \,\hat{\mathbf{i}} + e^t \cos t \,\hat{\mathbf{j}}\)

    Answer
    \(\vecs r(s)=\left(1+\dfrac{s}{\sqrt{2}}\right) \sin \left( \ln \left(1+ \dfrac{s}{\sqrt{2}}\right)\right)\,\hat{\mathbf{i}} +\left(1+ \dfrac{s}{\sqrt{2}}\right) \cos \left( \ln \left(1+\dfrac{s}{\sqrt{2}}\right)\right)\,\hat{\mathbf{j}}\)

    Curvature and the Osculating Circle

    30) Find the curvature of the curve \(\vecs r(t)=5 \cos t \,\hat{\mathbf{i}}+4 \sin t \,\hat{\mathbf{j}}\) at \(t=π/3\). (Note: The graph is an ellipse.)

    13.3E: Exercises for Section 13.3 (9)

    31) Find the \(x\)-coordinate at which the curvature of the curve \(y=1/x\) is a maximum value.

    Answer
    The maximum value of the curvature occurs at \(x=1\).

    32) Find the curvature of the curve \(\vecs r(t)=5 \cos t \,\hat{\mathbf{i}}+5 \sin t \,\hat{\mathbf{j}}\). Does the curvature depend upon the parameter \(t\)?

    33) Find the curvature \(κ\) for the curve \(y=x−\frac{1}{4}x^2\) at the point \(x=2\).

    Answer
    \(\frac{1}{2}\)

    34) Find the curvature \(κ\) for the curve \(y=\frac{1}{3}x^3\) at the point \(x=1\).

    35) Find the curvature \(κ\) of the curve \(\vecs r(t)=t \,\hat{\mathbf{i}}+6t^2 \,\hat{\mathbf{j}}+4t \,\hat{\mathbf{k}}\). The graph is shown here:

    13.3E: Exercises for Section 13.3 (10)

    Answer
    \(κ≈\dfrac{49.477}{(17+144t^2)^{3/2}}\)

    36) Find the curvature of \(\vecs r(t)=⟨2 \sin t,5t,2 \cos t⟩\).

    Answer
    \(κ=2\)

    37) Find the curvature of \(\vecs r(t)=\sqrt{2}t \,\hat{\mathbf{i}}+e^t \,\hat{\mathbf{j}}+e^{−t} \,\hat{\mathbf{k}}\) at point \(P(0,1,1)\).

    Answer
    \(\frac{1}{2\sqrt{2}}\)

    38) At what point does the curve \(y=e^x\) have maximum curvature?

    Answer
    The maximum value of the curvature occurs at \(x=\dfrac{-ln(2)}{2}\).

    39) What happens to the curvature as \(x→∞\) for the curve \(y=e^x\)?

    Answer
    The curvature approaches zero.

    40) Find the point of maximum curvature on the curve \(y=\ln x\).

    41) Find the equations of the normal plane and the osculating plane of the curve \(\vecs r(t)=⟨2 \sin (3t),t,2 \cos (3t)⟩\) at point \((0,π,−2)\). Recall the normal plane contains the normal and binormal vectors, and the osculating plane contains the tangent and normal vectors.

    Answer
    \(y=6x+π\) and \(x+6y=6π\)

    42) Find equations of the osculating circles of the ellipse \(4y^2+9x^2=36\) at the points \((2,0)\) and \((0,3)\).

    43) Find the equation for the osculating plane at point \(t=π/4\) on the curve \(\vecs r(t)=\cos (2t) \,\hat{\mathbf{i}}+ \sin (2t) \,\hat{\mathbf{j}}+t\,\hat{\mathbf{k}}\).

    Answer
    \(x+2z=\frac{π}{2}\)

    44) Find the radius of curvature of \(6y=x^3\) at the point \((2,\frac{4}{3}).\)

    45) Find the curvature at each point \((x,y)\) on the hyperbola \(\vecs r(t)=⟨a \cosh( t),b \sinh (t)⟩\).

    Answer
    \(\dfrac{a^4b^4}{(b^4x^2+a^4y^2)^{3/2}}\)

    46) Calculate the curvature of the circular helix \(\vecs r(t)=r \sin (t) \,\hat{\mathbf{i}}+r \cos (t) \,\hat{\mathbf{j}}+t \,\hat{\mathbf{k}}\).

    47) Find the radius of curvature of \(y= \ln (x+1)\) at point \((2,\ln 3)\).

    Answer
    \(\frac{10\sqrt{10}}{3}\)

    48) Find the radius of curvature of the hyperbola \(xy=1\) at point \((1,1)\).

    A particle moves along the plane curve \(C\) described by \(\vecs r(t)=t \,\hat{\mathbf{i}}+t^2 \,\hat{\mathbf{j}}\). Use this parameterization to answer questions 49 - 51.

    49) Find the length of the curve over the interval \([0,2]\).

    Answer
    \(\frac{1}{4}\big[ 4\sqrt{17} + \ln\left(4+\sqrt{17}\right)\big]\text{ units }\approx 4.64678 \text{ units}\)

    50) Find the curvature of the plane curve at \(t=0,1,2\).

    51) Describe the curvature as t increases from \(t=0\) to \(t=2\).

    Answer
    The curvature is decreasing over this interval.

    The surface of a large cup is formed by revolving the graph of the function \(y=0.25x^{1.6}\) from \(x=0\) to \(x=5\) about the \(y\)-axis (measured in centimeters).

    52) [T] Use technology to graph the surface.

    53) Find the curvature \(κ\) of the generating curve as a function of \(x\).

    Answer
    \(κ=\dfrac{30}{x^{2/5}\left(25+4x^{6/5}\right)^{3/2}}\)

    Note that initially your answer may be:
    \(\dfrac{6}{25x^{2/5}\left(1+\frac{4}{25}x^{6/5}\right)^{3/2}}\)

    We can simplify it as follows:
    \( \begin{align*} \dfrac{6}{25x^{2/5}\left(1+\frac{4}{25}x^{6/5}\right)^{3/2}} &= \dfrac{6}{25x^{2/5}\big[\frac{1}{25}\left(25+4x^{6/5}\right)\big]^{3/2}}\\[4pt]
    &= \dfrac{6}{25x^{2/5}\left(\frac{1}{25}\right)^{3/2}\big[25+4x^{6/5}\big]^{3/2}} \\[4pt]
    &= \dfrac{6}{\frac{25}{125}x^{2/5}\big[25+4x^{6/5}\big]^{3/2}} \\[4pt]
    &= \dfrac{30}{x^{2/5}\left(25+4x^{6/5}\right)^{3/2}}\end{align*} \)

    54) [T] Use technology to graph the curvature function.

    Contributors:

    • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensedwith a CC-BY-SA-NC4.0license. Download for free at http://cnx.org.

    • Paul Seeburger (Monroe Community College) created question 6.
    13.3E: Exercises for Section 13.3 (2024)

    References

    Top Articles
    Best And Worst States To Save Money In 2024
    I asked an insurance agent for tips on saving money by bundling insurance
    Kmart near me - Perth, WA
    Craigslist Monterrey Ca
    Mcfarland Usa 123Movies
    Santa Clara College Confidential
    Midway Antique Mall Consignor Access
    Cars For Sale Tampa Fl Craigslist
    Robot or human?
    Jcpenney At Home Associate Kiosk
    Craigslist Heavy Equipment Knoxville Tennessee
    Truck Toppers For Sale Craigslist
    Healing Guide Dragonflight 10.2.7 Wow Warring Dueling Guide
    Dump Trucks in Netherlands for sale - used and new - TrucksNL
    Cbs Trade Value Chart Fantasy Football
    Best Nail Salon Rome Ga
    Inter-Tech IM-2 Expander/SAMA IM01 Pro
    Adt Residential Sales Representative Salary
    Pocono Recird Obits
    Safeway Aciu
    Phoenixdabarbie
    The Fabelmans Showtimes Near Baton Rouge
    Isablove
    Experity Installer
    Nurtsug
    Cavanaugh Photography Coupon Code
    Frequently Asked Questions - Hy-Vee PERKS
    Math Minor Umn
    La Qua Brothers Funeral Home
    Otis Offender Michigan
    Housing Assistance Rental Assistance Program RAP
    1-800-308-1977
    Wildfangs Springfield
    SOC 100 ONL Syllabus
    Scanning the Airwaves
    Ludvigsen Mortuary Fremont Nebraska
    Gt500 Forums
    Rhode Island High School Sports News & Headlines| Providence Journal
    5A Division 1 Playoff Bracket
    Homeloanserv Account Login
    LoL Lore: Die Story von Caitlyn, dem Sheriff von Piltover
    Doublelist Paducah Ky
    2013 Honda Odyssey Serpentine Belt Diagram
    Collision Masters Fairbanks
    Avatar: The Way Of Water Showtimes Near Jasper 8 Theatres
    Squalicum Family Medicine
    Ehc Workspace Login
    Breaking down the Stafford trade
    Zipformsonline Plus Login
    Joy Taylor Nip Slip
    Online TikTok Voice Generator | Accurate & Realistic
    Zadruga Elita 7 Live - Zadruga Elita 8 Uživo HD Emitirani Sat Putem Interneta
    Latest Posts
    Article information

    Author: Msgr. Refugio Daniel

    Last Updated:

    Views: 6018

    Rating: 4.3 / 5 (74 voted)

    Reviews: 81% of readers found this page helpful

    Author information

    Name: Msgr. Refugio Daniel

    Birthday: 1999-09-15

    Address: 8416 Beatty Center, Derekfort, VA 72092-0500

    Phone: +6838967160603

    Job: Mining Executive

    Hobby: Woodworking, Knitting, Fishing, Coffee roasting, Kayaking, Horseback riding, Kite flying

    Introduction: My name is Msgr. Refugio Daniel, I am a fine, precious, encouraging, calm, glamorous, vivacious, friendly person who loves writing and wants to share my knowledge and understanding with you.